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Lecture 11 : Non-equilibrium thermodynamics .

Classical thermodynamics : Conversion of heat and work in systemsthat are in a state of equilibrium.
What does equilibrium mean ?

(i) Does not depend on its history.(ii) No time dependence
(iii) No met transport of heat , mass,... no currents ,

no fluxes
Second law of thermodynamics defines arrow of time.
Spontaneous process : The entropy of an isolated system will not

decrease.

Thermodynamic potential E (no work or heat exchange)
2nd

enc Energy is minimal , entropy is maximal

More broadly : System in thermodynamic equilibrium
all intensive thermodynamic variables are constant in space & time

· El Tg =Te

Pq = Pl

My =Ml ·

In non-equilibrium state ,
intensive variables are not constant.

~ spatial gradients in intensive variables , sit. system
moves towards a state of thermodynamic equilibrium-

cirlume")
- currents & fluxes: -p & momentumtransport

in

#T ) heat Centropy (transport
"roughly" .



②
Axiomatic thermodynamics.

Defines thermodynamic State variables (T , E , S, . . . . )
is depend only on the thermodynamic state.

Collection of state variables define thermodynamic state
↑ equations of state which relate various state variables , eg &p

=P

Cideal gas)
Intensive variables : Extensive variables :

F(pimiy ,E ..... ) Y -EV
,
N
,
A , , Fi ....)

"generalised forces" "generalised displacements"
Since product is a form of work.

#Lawsof thermodynamics.

Systems A &B are in thermal equilibrum ETH =TB.·thlaty is transitive : A in eg -withi and Bin equilibrium with G

=> TA =Tc
,
A is in equilibrium with G

Crelevant for thermometers)· Applies also to mechanical and chemical
equilibrium.

it law There exists a state function E called internal energy-

which is additive and extensive

E is conserved : dE = Q + TW

Q : heat absorbed by the system.
W : work done on the system.

Configurational work. : W = :d*
2nd law Thereexistsa statefunctioncalledentru,a action &S-

is exact-



③

Sis postulated to be a monotonically increasing function of E .

For isolated system : S = SCE
,
Y)

US=&540 for any process connecting thermodynamic states a and b.

where equality holds for reversible processes , and strict inequality for

spontaneous (i . e. irreversible)processes :

&orollary Consider dS=d S=)
For reversible process :

dE=dQ(reu + Fod*
dS = ( Qre[ +Jod · ()

For adiabatic reversible process : (dQ)rev =O-

But (# ) must hold for all reversible processes , thusE =-
Since Smonatorically increases with E : (=: 0
Therefore : =- .

So we conclude for reversible processes : dS= Ed- /T :d
E dE =Tasted .

In other words S is the exact differential corresponding to heat transport
with temperature being the integrating factor.

See Chandler Smaximal for isolated system #) Eminimal .
&time

= I must be constant in space in equilibrium. Leg. condition

andso (stability condition



⑭
3dlaw Sapproaches a constant value as the absolutetemperature
-

reaches Zero Kelvin

ETo cannot be reached in finite number of processes.
-

in equilibrium constant in space and time. What about nonequilibrium?
Fundamental assumption : Even for systems that are globally out of
equilibrium , locally it acquires equilibrium so fast that we can
define local versions of the intensive variables .
= Non-eg . thermodynamics focuses ontime scales much longer than
the time scales of the establishment of local equilibrium .

Recall : dS = EdE-Ed
NoteE isconjugatedWeconjecturthatauseS

energy transport. -
Let's focus on an isolated system. I

and gratients in Ecause
E and N are conserved. transport of.
So we can define local quantities
E = e(rit) and p = g(rit) . For now we don't take into account

balance of linear momentum.
Continuity equations : + vije = (no convection)

energyconservation go : flex

&+p
= 0·

Sparticle number conservation
We impose the so-called phenomenological laws :

Yi= Lite Lik : phenomenological coefficients
FR : thermodynamic forces.



⑤
So we find :

p = (p)-)+ (i) cross coefficients-
Soret effect :

-E+ L (t) .

coupling between mass & heat
transport.

Temperature gradient
#) concentration

gradient.
Onsager (Nobel prize , 1968) : Lij = Lji . (we will prove

it later) .

Connection with empirical transport laws.
Eig .:

Jp = -DTp .

D[m2 st] : diffusivity or diffusion constant .
Fick's first law of diffusion. Tsothermal particle transport .

Valid for dilutegases/dilute solutions.

How it connectstop
= (pp() ?

For dilute gases/dilute solutions MM: ener GE 200=

When inserted in continuity equation:D
Fick's second law.

Entropy production.
Consider general system (not necessarily isolated).

↓ S = dS ; + &Se -- entropy supplied to the system
↑ by its surroundings-

entropy produced inside
the system



⑳
Recall : &S:0 for reversible (equilibrium) transformations-

↓ Sico for irreversible .
↓ Se can be positive, negative , or zero depending on how system

interacts with surroundings
Adiabatic systems :&Se = o => dS20 for adiabatically

insulated system.For closed system : dSe= Carrot-Cilausius theorem
ds?
In irreversible thermodynamics : ↓Size

Central goal is to relate this contribution to the entropy production .

S= fdis(rit) . -So ⑤V

entropic
flux .Sid per unit area ↑

entropy source
per unittime

strength
or "entropy production.

"

Using Gau law , we find :

&-
· >0 Centropy production must be positive

even locally , strong conjecture.

Locally :
Tds = de-ZMhdpk .

Assume this equation is valido
for a volume element followed
along its centre of gravity motions



For now no convection :

⑦

↑ =

=>
= --Zun]
-

Comparison to the entropy balance gives :

= -Eu
~= (t)-(
Separation into div + source term is constrained Sit . 5= 0

in equilibrium.
and that it must be invariant under aGalilei transformation.
Furthermore

,-
Together with phenomenological laws , we see that

W= % :Fi
Jueralised forces

- I Listin
Y
generalized fluxes -

=> ↳ must be positive definite; and together with Ousages reciprocity
E =1T .



⑧
The only thing left to prove is Onsager reciprocity.
For this we need the so-called Einstein fluctuation theory.

=hinchinfluctuationtheye
py as

do =Todgmeralisedtensities.

generies
So: (E , Pain Pa , -)

F = (- -T
-

M...- - -)

Let(E) denote the number of microstates of an isolated system.

(microcanonical ensemble).

Consider R(E ,) <R(E) -

Fundamental assumption of statistical mechanics :
PLE

,)=
E(E) : G=) Plit)=tel exp[t

SCE) = kiln &(E ,g)

Second law : entropy is maximal in equilibrium. =Yeg-
Define = -Jeg . (small fluctuation away from equilibrium

Then : SCE) = Seg)-tag ...
=

whereg (I goingeg



⑨
Note thatI must be positive definite (second

law) .

g
=gT)5 is a state function).
=

Note furthermore gas-goo Maxwell relations

Assuming that@ Lok40 ,
we have that

PLE
, j) = Pa) = V exp

This is a Gaussian distribution , so : <0
:0j] =kg)
L - kpg

- 1

=

which follows also from (j) = -Kodij Lexercise).

To proceed , we need to extend above formalism to include

temporal fluctuations-
Since N = NCt)

,
where T = (T ,

YN) == (t) ·

Recall time evolution is

givelyS
with 6N initial conditions.

Note that these equations are invariant under t --t

in + - T M
.

This is called time-reversal invariance



⑩
Now consider joint probability distribution that =@ (0)

= (t)

P(it) =Ja+(dr" P(r , T' it)G(j -= (+))b(z- (t))
(E

,
E+dE)

↑=( " (0). * (d) N' = ( * (t); * (t)) -

where it is implied that integrations of ↑ andT are confined to

energy shell (E ,
E+dE)

Now consider conditional probability Plit)

Probality to have at time t given that system was at toat

Then Plit) = Pl,) p()
= fanfar P(r)p(rIn' it) ((t)S( -St))
(E

,
E+dE)

= (dN(dp(Mr it)S-(N) (E- (N'))
- SE

, EtdE)

Because of microscopic time reversibility :

P (N , /NN ; t) = P(rN ,-TrN -T *; -t)

PCEN ,-/ , -E ; t)

causality
This expression shows that if we reverse momenta , particles retrace
their former path.
Let's apply this expression to



⑭
P(:)P( it)=SdrfdtP(r(it)d(- (4))8(= (NY)

CE
,
E+dE)

Here
,
we used that (IM, ) + (4 , =)

(riNN) -> (4 , -T
* ).

and that variables are even functions of momenta , i . e.
& (r) =( ,-)

=> P()plt it) = Pl)p(it) . (detailed balance)

From detailed balance one can show that :

&( (t)) = (ltg(o)]
=> Cld(alt)-(d) = ((t) - (o)) = (d)]

Divide by t and take t o

= () Ut since in equilibrium

time-translation invariance .

Onsager regression hypothesis : Decay or regression of spontaneous
fluctuations is governed by the same laws as macroscopic flows
that occur in response to an external perturbation.

=>=Zir) Lijzj1 .

(k) S Can begeneralized to=hi variables that are odd

under

momentumreversaanzur)


