Leture II: Non-equilibrium-Hermodynamics.	
Classical the modynamics: Conversion of heat and work in systems that are in a state of equilibrium.	
What does equilibrium mean?	
(i) Does nod depend on its history.	
(ii) No time dependence (iii) No net transport of lead, mass, ... \Rightarrow no currents, no fluxes.	
Second law of Alemodynamics defines arrows of time.	
Spontaneous process: The entropy of an isolated system will not decare.	
Themodynamic potential	E. (no world or heat exchange)
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
21	
22	
23	
24	
25	
26	
28	
29	
20	
21	
22	
23	
24	
25	

cirlume") -currents & fluxes: -p & momentumtransportin #T) heat Centropy (transport "roughly" .

Axiomatic thermodynamics.

Defines thermodynamic State variables (T, ^E, ^S,) and depend only on the thermodynamic state. Collection of state variables define thermodynamic state ↑ equations of state which relate various state variables , eg &p ⁼ P Cideal gas) Intensive variables : Extensive variables:

 $\circled{2}$

Untensive variables:
 \overrightarrow{f} : \Rightarrow $(p_1,\mu_1 \gamma_1, \overrightarrow{E}, \overrightarrow{B},...)$ \overrightarrow{X} = $(-V,$ \overrightarrow{X} = $(\neg V, N, A, \overrightarrow{P}, \overrightarrow{H}, ...)$ "generalised forces" "generalised displacements" Since product is a form of work. Laws of thermodynamics. Pia (f
"guncol
Since p
dhlaw
Propert

Systems $A \& B$ are in thermal equilibrum $\iff T_A = T_B$. Property is transitive: A in eg-with B and B in equilibrium with G \Rightarrow \bigcap_{A} = T_{C} , A is in equilibrium with C Crelevant for thermometers)· Applies also to mechanical and chemical th C
emical
equilibrium. $I_A = I_C$, A is in equilibrium and
Gelevant for thermometers) Applies also to mechanical and ch
 I^{st} law There exists a state function E called internal energy $\frac{1^{st}}{100}$ There exists a state function E called internal energy
cubich is additive and extensive.
E is conserved: $dE = dQ + dW$ E is conserved : $dE = dQ +$
Q : heat absorbed by the system. le and
= dQ
system .
system . Configurational work. : W ⁼ $\vec{f} \cdot d\vec{X}$. 2nd Law There exists a state function 5 called the entrop W: work done on the system!
Infigurational work: $\frac{1}{4}W = \frac{1}{6} \cdot 3\vec{X}$.
Alaw There exists a state function S called the entropy.
S is extensive and additive. Since it is a state function of S is exact S is postulated to be a monotonically increasing function of E . For isolated system: $S = S(E, \vec{x})$ Δ ζ = \int_{a}^{b} $d\zeta$ \geq σ for any process connecting thermodynamic states a and b. where equality holds for reversible processes , and strict inequality for spontaneous (i . e. irreversible) processes : Δ S= $\int_{a}^{b} dS \ge 0$ for any process connecting thermodyna

culter equality holds for reversible processes, and strict

spontaneous (i.e. irreversible) processes.

Corrallory Consider $dS = \left(\frac{\partial S}{\partial E}\right)_{a}^{dE} + \left(\frac{\partial S}{$ For reversible process: $dE=[d\mathbb{Q}\rangle_{rev}+\vec{f}\cdot d\vec{x}$ dS ⁼ $\frac{1}{\sqrt{2\pi}}$ de $\frac{1$ **(4)** For adiabatic reversible process: $(dG)_{rev}$ =0. $But (*)$ must hold for all reversible processes , thus: $\left(\begin{matrix} \frac{\partial S}{\partial \vec{X}} \end{matrix}\right)_{E}$ = $-\left(\frac{\partial S}{\partial E}\right)_{\vec{x}}$ Since S monofonically increases with $\mathbf E^1$ $\frac{10}{10}$
ses J thus: $\left(\frac{\partial S}{\partial \vec{x}}\right)_{E}$
 $\left(\frac{\partial S}{\partial \vec{E}}\right)_{R}$ =: $\frac{1}{T}$ 70 Thursfore: $\left(\frac{\partial s}{\partial \vec{x}}\right)_{\vec{E}}$ = $-\frac{\vec{f}}{T}$. $\left(\frac{35}{3\overline{x}}\right)_{E}$ = - $\frac{7}{4}$. $\sqrt{3\vec{x}}$ $E = \vec{\tau}$.
So we conclude for reversible processes: $dS = \frac{1}{\tau} dE - \vec{f}/\tau \cdot d\vec{x}$ \Rightarrow $dE = TdS + \vec{f} \cdot d\vec{X}$ In other words ^S is the exact differential corresponding to heat transport with temperature being the integrating factor. See Cihandler S maximal for isolated system \Leftrightarrow Eminimal. &time with temperature being the integral
Se must be constant in space in equilibrium. Leg.condition and $\frac{df}{dx}$ 20 (stability condition)

③

⑭

$$
j_{i} = \sum_{k} L_{i,k} \nabla \phi_{k}
$$

$$
L_{i,k} : \text{phononenological coefficients}
$$

$$
F_{k} : \text{phononenometric forces.}
$$

Sone find:
\n
$$
f_p = L_{sp} \nabla (-\frac{\mu}{T}) + (L_{pe} \nabla (\frac{1}{T})
$$
 cases coefficients.
\n $f_{ep} = L_{sp} \nabla (-\frac{\mu}{T}) + L_{ee} \nabla (\frac{1}{T})$,
\nSoret different
\n $H_{mpl-value$ gradient
\n $H_{mpl-value$ gradient
\n $H_{mpl-value$ gradient
\n $H_{mpl-value}$
\n $H_{mpl-value$
\n $H_{mpl-value$
\n $H_{mpl-value}$
\n $H_{mpl-value$
\n $H_{mpl-value}$
\n $H_{mpl-value$
\n $H_{mpl-value}$
\n $H_{mpl-value$
\n $H_{mpl-value}$
\n $H_{mpl-value}$ <

Recall:
$$
ds_t=0
$$
 for results (equilibrium) transformations.
\n $ds_t>0$ for inversible.
\n $ds_t>0$ for inversible.
\n $ds_t>0$ for the positive, negative, or zero depending on how system
\ninteracts with surroundings.
\nAdiabatic systems: $ds_t=0$ = 0 $ds\ge0$ for adiabatically
\nFor closed system: $ds_t = \frac{dQ}{dt}$ (Germot-Glausius Heorem)
\n $ds \ge \frac{dQ}{dt}$ (Germot-Glausius Heorem)
\n $ds \ge \frac{dQ}{dt}$
\n $\frac{dS_t}{dt} = \int_{\sqrt{t}} dV \le \int_{\$

\n
$$
T \frac{2s}{dt} = \frac{de}{dt} - \frac{c}{2t} M_s \frac{d\%}{dt}
$$
\n

\n\n $\Rightarrow \frac{ds}{dt} = \frac{1}{2t} M_s \frac{d\%}{dt}$ \n

\n\n $\Rightarrow \frac{ds}{dt} = -\frac{\sqrt{3}}{t} M_s \frac{d\%}{dt}$ \n

\n\n $= -\nabla \cdot \left[\frac{\partial}{\partial t} - \frac{\partial}{\partial t} M_s \frac{d\%}{dt} \right] + \frac{\gamma}{d} \cdot \nabla \left(\frac{1}{T} \right)$ \n

\n\n $= -\nabla \cdot \left[\frac{\partial}{\partial t} - \frac{\partial}{\partial t} M_s \frac{d\%}{dt} \right] + \frac{\gamma}{d} \cdot \nabla \left(\frac{1}{T} \right)$ \n

\n\n $= -\nabla \cdot \left[\frac{\partial}{\partial t} - \frac{\partial}{\partial t} M_s \frac{d\%}{dt} \right]$ \n

\n\n $= -\nabla \cdot \left[\frac{\partial}{\partial t} - \frac{\partial}{\partial t} M_s \frac{d\%}{dt} \right]$ \n

\n\n $\sigma = \frac{1}{0} \cdot \nabla \left(\frac{1}{T} \right) - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial}{\partial t} - \nabla \left(\frac{M_s}{T} \right) \right)$ \n

\n\n $\sigma = \frac{1}{0} \cdot \nabla \left(\frac{1}{T} \right) - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial}{\partial t} - \nabla \left(\frac{M_s}{T} \right) \right)$ \n

\n\n $\sigma = \frac{1}{0} \cdot \nabla \left(\frac{1}{T} \right) - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial}{\partial t} - \nabla \left(\frac{M_s}{T} \right) \right)$ \n

\n\n $\sigma = \frac{1}{0} \cdot \nabla \left(\frac{1}{T} \right) - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial}{\partial t} - \nabla \left(\frac{M_s}{T} \right) \right)$

The only thing left to prove is Onsage reciprocity.
\nFor this we need the so-called Einstein fluctuation theory.
\nEinstein fluctuation theory
\nWe write the local entropy as
$$
ds = \vec{\phi} \cdot d\vec{p} \in \mathcal{P}
$$
 are called
\nthe same direction, the original
\n
$$
S: \vec{g} = (e, g_1, ..., g_n, ...)
$$
\n
$$
\vec{\phi} = (T^{-1}, T^{-1} \mu_1, ... T^{-1} \mu_{n+1} -)
$$
\n
$$
\vec{\phi} = (T^{-1}, T^{-1} \mu_1, ... T^{-1} \mu_{n+1} -)
$$
\n
$$
S = (e, g_1, ..., g_n, ...)
$$
\n
$$
\vec{\phi} = (T^{-1}, T^{-1} \mu_1, ... T^{-1} \mu_{n+1} -)
$$
\n
$$
S = (f, g) \times S \cup (E).
$$
\nConsider the number of microstructures of an isolated system.
\nConsider a $S = \vec{g} \cdot \vec{g}$ and $S = \vec{g} \cdot \vec{g}$ and $S = \vec{g} \cdot \vec{g}$.
\n
$$
S(f, \vec{g}) = \begin{cases} \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \\ \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \end{cases}
$$
\n
$$
S(f, \vec{g}) = \begin{cases} \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \\ \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \end{cases}
$$
\n
$$
S = \begin{cases} \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \\ \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \end{cases}
$$
\n
$$
S = \begin{cases} \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \\ \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \end{cases}
$$
\n
$$
S = \begin{cases} \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \\ \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \end{cases}
$$
\n
$$
S = \begin{cases} \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \\ \Delta(f, \vec{g}) & \Delta(f, \vec{g}) \end{cases}
$$
\n
$$
S = \begin{cases} \Delta(f, \vec{g}) & \
$$

Note that
$$
q
$$
 must be positive definite (acend law).
\n
$$
= q \cdot q^{T} (S \text{ is a state function}).
$$
\nNote further more:\n
$$
q \cdot q \cdot q^{T} \cdot (S \text{ is a state function}).
$$
\nHessuming that\n
$$
= \omega \leq \omega_{\text{A}} \leq \omega_{\text{A}} \text{ use have that}
$$
\n
$$
P(E_{1} \overline{y}) = P(\overline{\omega}) = \sqrt{\frac{d\omega_{\theta}}{d\pi \overline{\omega_{\theta}}}}
$$
\n
$$
= \sqrt{\frac{d\omega_{\theta}}{d\pi \overline{\omega_{\theta}}}}
$$
\n<

⑨

Now consider joint probability distribution that
$$
\vec{\alpha}
$$
 and $\vec{\alpha}$
\n
$$
\vec{\alpha} \cdot \vec{\alpha} \cdot d\theta
$$
\n
$$
P(\vec{\alpha}, \vec{\alpha} \cdot \vec{r}) = \int d\Gamma \int d\Gamma \cdot P(\Gamma, \Gamma' \cdot \vec{r} \cdot \vec{r}) \delta (\vec{\alpha} \cdot \vec{\alpha} \cdot (\Gamma)) \delta (\vec{\alpha} \cdot \vec{\alpha} \cdot (\Gamma'))
$$
\n
$$
\Gamma = (\vec{p}^H \cdot (G), \vec{r}^H \cdot (G)) \quad \Gamma' = (\vec{p}^H \cdot (E), \vec{r}^H \cdot (E)).
$$
\nwhere it is implied what integrations of Γ and Γ' one confidence
energy shell (E, E+dE)
\nNow consider conditional probability $P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r})$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r}) =
$$
\n
$$
P(\vec{\alpha} | \vec{\alpha} \cdot \vec{r
$$

⑩

$$
P(\vec{\alpha})P(\vec{\alpha}|\vec{\alpha}';t) = \frac{1}{\Omega} \int d\Gamma \int d\Gamma \cdot P(\Gamma'|F;t) \delta(\vec{\alpha}-\vec{\alpha}(\Gamma)) \delta(\vec{\alpha}'-\vec{\alpha}(\Gamma'))
$$

\n
$$
P(\vec{\alpha})P(\vec{\alpha}|\vec{\alpha}';t) = \frac{1}{\Omega} \int d\Gamma \int d\Gamma \cdot P(\Gamma'|F;t) \delta(\vec{\alpha}-\vec{\alpha}(\Gamma)) \delta(\vec{\alpha}'-\vec{\alpha}(\Gamma'))
$$

\n
$$
P(\vec{\alpha})P(\vec{\alpha}|\vec{\alpha}') = P(\vec{\alpha})
$$

Here, we used that
$$
(\vec{r}^N | \vec{p}^N) \rightarrow (\vec{r}^N | -\vec{p}^N)
$$

\n $(\vec{r}^N | \vec{p}^N) \rightarrow (\vec{r}^N | -\vec{p}^N)$.
\nand that \vec{q} variables are even functions of momenta, i.e.
\n $\vec{q}^N(\vec{r}^N | \vec{p}^N) = \vec{q}(\vec{r}^N | -\vec{p}^N)$

 $= D P(\vec{\alpha}) P(\vec{\alpha} | \vec{\alpha}';t) = P(\vec{\alpha}') P(\vec{\alpha}' | \vec{\alpha};t).$ (detailed balance) From detailed balance one can show that: k terms (terms)
letailed balance
 $\langle \vec{\alpha}(0) \vec{\alpha}(t) \rangle$

(ltg(o)] => Cld(alt)-(d) ⁼ ((t) - (o)) ⁼ (d)] Divide by ^t and take t ^o =() Ut since in equilibrium time-translation invariance.

Onsager regression hypothesis : Decay or regression of spontaneous fluctuations is governed by the same laws as macroscopic flows Juicuations is governed by the seme laws as macro
fhat occur in response to an external perturbation.

that occur in response to an external perturbation.

\n
$$
\frac{\partial \alpha_{i}}{\partial t} = \sum_{k} L_{ik} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right)
$$
\n
$$
\left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{i}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{k}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{k}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{k}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{k}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{k}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{k}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{k}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{k}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{k}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n
$$
\frac{\partial \alpha_{i}}{\partial \alpha_{k}} \left(\frac{\partial \Delta S}{\partial \alpha_{k}} \right) = -k_{B} \delta_{ij}
$$
\n